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Using the Adams-Gilbert local-orbitals theory, accurate to first order in interatomic over-
lap, it has been possible to obtain self-consistent local orbitals for several fcc alkali halide
crystals. In this paper, results are reported for NaCl, NaBr, KCl, and KI. In this calcula-~
tion, nearest neighbors are considered exactly while more distant neighbors are considered
in a point-ion model. The method of Roothaan is used to obtain the results. All relativistic

effects are neglected in this calculation.

1. INTRODUCTION

Since the introduction of exact localized-orbitals
theories by Adams' and Gilbert,? one has been given
a method capable of treating the exact self-consis-
tent Hartree-Fock problem for certain extended
systems. The Adams-Gilbert equation is in general
rather cumbersome and it is useful to simplify the
equation. A pseudopotential method of obtaining
such a simple local-orbitals equation has been pro-
posed by Anderson.® The author has suggested
that one can simplify the Adams-Gilbert equation
by expanding it in powers of interatomic overlap,
and retaining terms to first order.! This seems
justified for such systems as the alkali halides
where the interatomic overlaps are typically of the
order 0.1 or less.® Previously we have reported
such solutions for the LiX crystals.® Here, as
previously, we adopt the analytic Hartree-Fock
technique of Roothaan’ in a somewhat modified
form. In this present work, the calculations for
NaCl and NaBr were performed using the same
computer code as were used in the work for the
lithium halide crystals. In the case of KCl and KI,
a modified version of our previous code was used.
The chief effect of the modified code is to produce
single-particle energies with the error in the fifth

or sixth significant figure rather than in the fourth
figure ag was the case of the lithium halide crys-

tals. Differences of this sort are not significant for
most solid-state problems.

The local orbitals, which the author and others
previously obtained for the LiX crystals, and also
the current results for NaCl and NaBr have proven
useful for band-structure calculations.® Calcula-
tions of elastic constants, using these local orbitals,
seem to improve the agreement between theory and
experiment with respect to computing the deviation
from the Cauchy relations for the lithium halides.’

The general results of band calculations using
Hartree-Fock theory and self-consistent local or-
bitals are in general in poor agreement with pre-
vious results for these materials.*'® This is es-
pecially true for the Slater type of exchange or
modification of it. In general, the Hartree-Fock
results have valence bands which are substantially
broader than previous calculations led one to ex-
pect.

The computer codes used in this study were de-
veloped by the author for the IBM 360-75 computer
at the University of Illinois. In Sec. II, we pro-
vide a brief description of the local-orbitals tech-
nique and our numerical methods. In Sec. III, nu-
merical results are presented for NaCl, NaBr,
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KCl, and KL
II. LOCAL-ORBITAL EQUATIONS

If we have a solid containing filled shells, we may
write the Hartree-Fock operator for an electron in
this solid in the form

A
E=_vf_22_4_
A ‘RM|

- - (-1 - - -
+4f|r,—r,| p(r,,1,)dr,

'ZD(;I;;J)lFi_Fil-I' ()

In Eq. (1) we represent the Fock operator in ryd-
berg units. Z , is the atomic number of the nucleus
at site A, R 43 is the separation of electron i from
site A, and T, and T, are the coordinates of the
electron. We sum over all nuclear sites in the lat-
tice. The quantity p(T, ') is the spin-independent
part of the kernel of the density operator and is

p(F,7)= 2 |Ai(F) S, BLF) | . (2

At,Bj

S},,B ; is the A7, Bjth element of the inverse of the
overlap matrix for the solid and may be obtained
using the familiar Léwdin expansion

Sat,85=041,85— (Sai, 5~ Oai,8))
|

+2(1- 8cA(1=06cp)Sai, ceScr,ms+ -+, (3
cr

where
SA!.BI=<Ai | Bj> .

In the above formulas, we allow for the general
case in which the Fock orbitals are nonorthogonal.
In this case Gilbert? has shown that one may re-
place the orthogonality constraint with an arbitrary
constraint such that the Fock equation has the
form

(F;=pUpp)bpy =€ a4 bai @

where U, is an arbitrary Hermitian operator,
chosen to produce local solutions to Eq. (4). We
divide the Fock operator into two parts:

Fi=F,+U, , (5)
FAz—vf_ZZA/lﬁ,“l
+ 4 [|F=F,| 12, 0%(F) dr,
22, o mlr)NE) | Fi-F 1. (8

In order to obtain solution to Eq. (4) we proceed
as follows: We choose U, = U, and we obtain pU,p
and U, by expanding the pertinent expressions in
powers of interatomic overlap retaining terms
linear in S, 5;. When this is done one must solve
the equation*

(-VE-2Z,/| Ry | +42, [¢%4,F) | F1-TFo | dF, - L5225 /| Ry, |

+425 5, [ 03, | Fi-Fp | " dFy = €40 ]0u(F)- 22, 0.0,(F) [ 0%, (F) bl £ | (Fy- T, | " dF,
=2k () [ 04T uF) (- 2522,/ | Rpy | +4252, [ ¢%4,F) | T~ F, | ]dF,dF, . (D)

This equation is solved iteratively for both a halo-
gen and an alkali site in the lattice utilizing the
symmetry of the crystal.

We solve Eq. (7) by the method of Roothaan. %7
We assume the one-electron solutions (dropping the
lattice-site subscript) to be of the form

¢,(F) =R, (NYTO, $)X(s) . (8)

In Eq. (8) the Y} are the usual spherical harmon-
ics and the X are the spin functions. We then as-
sume

’VR,”('V) =E.’ C!"’Nllrldn{”e-zllr ,

(9)
N, =[(22,,)2 24153 /(21 + 24,,+ 2)1]1/2 |

where A;; and Z;; are either chosen by the varia-
tional technique or otherwise. The C,,, are chosen
by a variational technique. In general, we use

I

A and Z determined by prior calculations.

In this method we use the local-orbitals equation
in integral form. Using the notation of Hartree, !*
one finds for the np shell of C1° as an example

€np = Kpp + 2F%np, 18) + 2F%np, 25) + 2Fnp, 3s)
+6F°np, 2p) + 6F%np, 3p)
- $GYnp, 1s) - 3 G'(np, 2s)
-4 GYnp, 3s) - G®np, 2p) - G(np, 3p)
- 0.4G? (np, 2p) - 0. 4G%np, 3p) . (10)

IIIl. RESULTS

Although all the one-center integrals could be
evaluated analytically, we have evaluated some in-
tegrals by numerical techniques, using previously
developed and tested codes. The multicenter in-
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tegrals are computed by numerical techniques.
Sufficient accuracy is maintained so that the total
energies of the free ions are accurate to about five
significant figures in the case of KC1 and KI. This
was determined by comparison of results obtained
from these codes with previous calculations by
other authors, 12~

We require that, in order to be self-consistent,
the wave functions from the Nth iteration differ by
no more than one part in one thousand from the
wave functions from the (N - 1)st iteration. This
produces single-particle eigenvalues consistent
to better than one part in ten thousand.

In all cases, the values for A and Z were chosen
from previous calculations. The choices for Cl1°
were given in Refs. 6 and 13, for Br~ the values of
Ref. 14 are used, for I" the values of Ref. 6 are
used, for Na' the values of Ref. 12 are used, and
finally, for K*the values of Ref. 13 are used.

TABLE I. Atomic parameters for Na* in the notation
of Ref. 13. Energy parameters defined as €., ={(n| Fy
+Uqln’) (in rydbergs).

Basis members A;; and Z;; from Ref. 12

=0 =1
Jj Ay Zyy Ay Zy
1 0 15.949 0 12.048
2 0 9.439 0 5.703
3 2 11.624 0 3.336
4 1 4.384 0 2,146
5 1 2.811

Free-atom results
€15,13=—81.66 €s,26 =—6.13 €9p,2p=—3.59
J Ciog Caoy Coyy
1 0.213934 0.014920 0.012 262
2 0.976 288 0.334173 0.360720
3 —0.011 265 0.054471 0.713 569
4 —0.027 044 -0.601795 0.600 458
5 0.015 336 -0.723174
NaCl results for Na*

€4y,13=—81.05 €45,25 =1339x10°7

€95,26 =— 5.514 €9p,2p=—2.972
1 0.213 942 0.014878 0.012036
2 0.976 286 0.334195 0.362580
3 -0.011 261 0.054 231 0.708 270
4 —0.027065 —0.600998 0.605 595
5 0.015 345 —0.723846

NaBr results for Na*

€4,1s =—81.06 €4g,0 =1197 x107"

€99,20 =— 5.539 €p,2p == 2. 997
1 0.213930 0.014886 0.012045
2 0.976 289 0.334190 0.362503
3 -0.011272 0.054 260 0.708 541
4 - 0.027057 —-0.601092 0.605 322
5 0.015 342 -0.723768

TABLE II. Atomic parameters for K’ in the notation
of Ref. 13. Energy parameters defined as €, =(n| F
+Uqln’) (in rydbergs).

Basis members A;; and A;; from Ref. 12

j Ay Zyy Ay Ay

1 0 21.536 0 17.000
2 1 15,255 0 8.890
3 2 17.000 0 5.450
4 2 11.085 2 8.800
5 1 6.687 1 3.253
6 2 3.502 2 2,412
7 2 2.338 1 1.650

K' free-ion results
€op,0p == 23.47
€3p,3p == 2.342

€15,15 == 267.9
€12 =—29.45
€3 = —3.932

Ciog Caoy Cao Coiy Cay

0.891 298 0.235030 0.079 651 0.025 204 0.004 552
0.415108 0.226 946 0.103 541 0.876021 0.244525
-0.182045 -0.094549 -0.031265 0.447 807 0.114531
0.014555 0.177 247 0.073 560

0.006169 —0.925935 -0.519943
-0.001281 -0.009806 0.662880
0.000 586 0.001451 0.521 531

0.001731 —0.841927
0.001088 —0.435357

J
1
2
3
4 -0.009571 -0.163896
5
6
7 —0.000674 —0.152584

K* results in KI

€18 == 267.4 €1,2 = 200%10°7 €9p,2p = — 22.98
€g,20 =~ 28.95 €44,3 = 50 X107 € 3p=—1.842
€353 = — 3.421 €y,25 = 2846 X107 €2p,3 = 2738 X107
1 0.891279  0.235038  0.079740  0.025182  0.005607
2 0.415134  0.226960  0.103358  0.876356  0.230982
3 -0.182085 =-0.094571 —0.031061  0.446985  0.146568
4 -0.009539 -0.163935 0.013309  0.177667  0.057727
5 0.006146 -0.925922 —0.518867  0.001816 —0.851732
6 —0.001276 —0.009735  0.662037  0.000960 —0.400054
7 0.000584  0.001432  0.523737 -—0.000584 =—0.190553
K* results in KC1
€45,1 == 267.0 €15,2 == 50 %1077 €op,2p= = 27.92
€99,2 = — 28.86 €1,2 = — 28 X107 €gp,3=—1.781
€, =—3.366 €, 3 = 2835 X107 €, = 2743 %107
1 0.884212  0.233274  0.079450  0.024979  0.005665
0.425348  0.229836  0.104514  0.879652  0.230760

-0.192995 -0.097500 -0.032018
—-0.001006 -0,158612 0.014574
-0.000195 -0.926287 -—0.519804

0.000112 -0.009211
—0.000096 0.001152

0.438702 0.147 269
0.181976 0.057 586
0.003520 -0.852634
0.660415 —0.000950 -—0.395962
0.524 579 0.000620 —0.194787

S oo WwN

Past experience for LiCl indicated that a basis
satisfactory for atomic calculation also sufficed
for these solids.

In the solid-state calculation, the detailed part
of U, was evaluated exactly for only nearest neigh-
bors and more distant shells are included in a
point-ion approximation. This approximation seems
consistent with the restriction to terms linear in
S in obtaining the equations.

In Table I, we specify the basis used for the Na'
in NaCl and NaBr. In Table II, we specify the basis
used for the K* ion and also give the one-electron
orbitals and eigenvalues for the free K * ion and for
K" in KC1 and KI.

The C1” basis is given in Table III along with the
one-electron eigenvalues and eigenfunctions for C1°
in KC1 and NaCl. The Br~ basis is given Table IV
along with the one-electron eigenvalues and eigen-
functions for Br~ in NaBr. Finally, in Table V, we
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of Ref. 13. Energy parameters defined as €p,+ ={n| F
+Uyln’) (in rydbergs).

4

TABLE IV. Atomic parameters for Br~ in the notation
of Ref. 13. Energy parameters defined as €,,+ =(n| F
+Uul n’) (in rydbergs).

Basis members A;; and Z;, from Refs. 6 and 13

Basis members A; and Z, from Ref. 14

j Ay 2, Ay zy, j Aoy 2 Ay Cy Ay Cy
1 0 18,9832 0 13.7900 1 0 37.3537 0 23,3102 0 16.0578
2 0 14.7941 0 8.8355 2 1 33,1430 0 15.6532 0 10.0855
3 1 14.7181 0 5.3987 3 1 17.2808 1 14.8256 0 7.2889
4 1 9.6220 1 4.0186 4 2 16,3407 1 9.5909 0 4,7416
5 1 6.7665 1 2.4367 5 2 8.4198 1 6.1399 0 2,9679
6 2 6. 2190 1 1.6382 6 2 6.6235 2 5.3085
7 2 3. 2450 1 0.8219 7 3 6.6182 2 2,8150
8 2 2.1679 1 0.4120 8 3 3.4739 2 1.6374
9 2 1.3550 9 3 2.1970 2 1.1277
CI in KCl 10 3 1.4859
€y, 15 =~ 209.7 €1q,29 = 240 X107 €3p,2=— 16.08 Br” in NaBr
€, =—21.15 €14, =64 %1077 €3,3 =—0.9513 €1, =—980.9 €45,4 =2 %1077 €p,p=—0.9112
€2 =—2.124 €55,2 =73 X107 €39, = 233 X107 €52 =—130.4 €32 = — 1 %1077 €93 = — 1 %1077
j Croy Caoy Caoy Cayy Cyiy €, =—19.71 € a’—3X1°;1 ‘2:.0=‘1"1°'77
1 0.669778  0.139805  0.071205  0.035885  0.011660 Ceamo 200 neza Snez 2100
2 0.,735753  0.185610  0.021104  0.341238  0.073760 E"'”:“lo_, Eu.v__“ -92 3 .
3 0.055290  0.168549  0.087676  0.938990  0.294120 18,3 Gl '
4 -0,060189 —0.123583 —0.117269 =-0.003222 —0.073687 j Ciog Caoy Cay Cyoy
5 0.054439 -0.892704 - 0.204580 0.020966 ~—0.692749 1 0.988320 0.318673 0.129551 0.041 564
6 -0.01994 —-0.324178 —0.284880 -—0.010432 —0.469828 2 0.144865 0.19659 0.076029 0.023 638
7 0.003998 -0.017044  0.526615  0.002767 —0.444862 3 —0.015696 —0.729875 —0.292041 —0.090983
8 —0.002328 0.004184  0.727979 -0.000815  0.062818 4 0.012828 —0.555448  —0.430691 —0. 145691
9 0.000597 -—0.001293  0.206781 5 -0.023306 -0.107770 0.463 690 0.215 380
CF in NaCl 6 0.032710 0.087670 0.661950 0.196048
€lo10= - 209.9 €, =6 X107 C2p,29 =~ 16.06 7 -0.014545 —0.027669 0.228957 0.139 643
Gum==21.15 €rrap == 43x10° €439~ —0.9689 8 0.001031  —0.000723 0.029 638 -0.687148
€yw=-2.138 o a=—4 X101 €50 = — 26 X107 9 -0.000570 0.000767 —0.012168 ~0.606511
. " 10 0.000199  —0.000308 0.004 452 ~0.145448
1 0.839156  0.273972  0.085814  0.035859  0.015226
2 0.017518  0.002839 -0.000188  0.341278  0.059 636 j Cyyy Cyyy Cuy Cay
3 0.322597  0.282125  0.098834  0.938990  0.326 528
4 -0.313230 -0.249242 -0.126646 —0.002829 —0.125450 1 0.155471 0.055 336 0.014064 0.051797
5  0.282344 —0.797500 —0.196723  0.020594 —0.591599 2 0.963 835 0.315906 0.095743 0.308 490
6 -0.122521 —0.383622 —0.284218 —0.010095 —0.617191 3 0.211122 0.181064 0.049119 0.542042
7 0.026217 —0.002114  0.519177  0.002630 =—0.369542 4 0.046856  —0.345677  —0.096732 0.766 897
8 -0.015657 —0.005896  0,729958 —0.000774  0.079862 5 —0.008477  -0.858743  -0.319643 0.142165
9 0.004179  0.001632 0212052 6 0.003400 —0.083717 0.037767
7 -0.000555 —0.018078 0.733829
8 0.000 302 0.008 686 0.503758
9  -0.000128 —0.003813 0.288080
give the basis used for I" along with the one-electron
eigenvalues and eigenfunctions for I" in KI.
N and also
In presenting the data in Tables I-V, we use the 11
€tpey =06, CAnl | F|An'T") | (12)

following conventions:

iq.zxﬁ]

i=1

TABLE V. Atomic parameters forI” in the notation of Ref. 13.

(11)

Equation (12) is evaluated to first order in Sy, 5, .
We note that, except for the inner orbitals, there
is no physical meaning to the diagonal elements

(in rydbergs).

Energy parameters defined as €,,» =(n | F +Uy|n’)

Basis members 4;; and Z;; from Ref. 6

j Ay Ay Zy Ay Zy
1 0 56.5239 0 26. 0738 0 19.7943
2 1 26.1681 1 19.6079 0 11. 0375
3 2 24.7445 1 9.2975 0 7.1802
4 2 12. 7500 2 8.0386 1 6.9183
5 3 10. 0218 2 4.2627 1 4.4943
6 3 5.2591 2 2.4794 1 3. 0322
7 3 3.3269 3 2.4549 1 2.2934
8 4 3.0142 3 1.6713
9 4 2.2501 3 1. 0150

10 4 1.4859 3 0.5075

11 4 1.1889
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TABLE V. (continued)

r inKI
€45,15=—2353.0 €54,35=20 %1077 . €5p,50=— 0. 831972
€25,29=—359.51 €2s,45=— 62 X107 52,,3,=8><10'1
€35,35 =~ 75. 637 €54,55=— 401 X107 €5, 0p=1%X10
€4,40=— 14. 437 €g,45=— 28 %1077 €5p,55= 15X 107"
€5s,50=— 1. 6881 e&w_— 183 %1077 €5 4p=— 13X 10"
€15,26= 14 X107 €459 =956 X107 €y, 50 =228 X10°1
€46,85=5% 1077 €5p,2p=— 340.28 €4p,50=— 323 X107
€15,45=— 23 X107 €3p,3p=— 66. 057 €3,3=— 48. 889
€15,55=— 147X 1077 €4p,4=—10.961 €y =~ 4. 8520

€3, =4 %1077

j Cry Coy Csoy Coy Csy
1 0.906 825 0.256 215 0. 095 943 0. 025 332 0.013 542
2 0.220254 ~0.231215 —0.076 048 - 0.015 407 ~0.007 833
3 -0.207122 ~0.704548 -0.470326 -0.157325 ~0.087376
4 0.110424 0.196 861 0.849449 0.338181 0.192 935
5 —0.086345 -0.171095 0.045505 - 0.082 235 ~0.052519
6 0. 092 839 0.197584 0. 063 822 - 0.603 005 ~0.477263
7 -0.153172 -0.332 260 -0.115622 0. 465 880 0.631190
8 0.158307 0. 347000 0.126119 - 0.449 492 ~0.0200371
9 -0.086164 —0.190846 -0.072393 0.235 157 0.521326
10 0.041491 0. 092 722 0. 036 437 -0.113243 -0.075096
1 -0.017913 - 0.040 157 -0.015983 0.049 160 0.091589
1 0.976374 0.210464 0.107477 0. 055 264 0.193 196 0.097616
2 0.200405 -0.018428 0.011830 0.009 063 0.907198 0.488432
3 - 0. 043739 -0.1722 620 ~0.599 834 - 0.336532 -0.269424 —0.193 844
4 0.033489 0.341557 0.658980 0. 406 354 0.239233 -0.391921
5 -0.022603 -0.211644 0.364 099 0.243 454 —0.083719 ~0.744 009
6 0.040778 0.387334 —0.199333 - 0.666 255 0.049 820 -0.073313
7 ~0.035370 -0.338680 0.146 259 ~0.120011 -0.018824 - 0.042 474
8 0.008264 0. 080768 -0.023158 ~0.354 850
9 -0.002151 -0.021338 0.004 870 ~0.271601
10 0.000453 0.004 529 —0.000921 0.035112

€,1,n Since we have not included the full effects

of crystal symmetry in producing the energy param-
eters. Thus if a one-electron spectrum is needed,
one must use these local orbitals to produce a full

band calculation.

Such calculations have been per-

formed for LiCl, LiBr, NaCl, and NaBr.®?

In conclusion, it has proven possible to obtain
self-consistent solutions to the local-orbital Har-
tree-Fock for NaCl, NaBr, KCl, and KI. Pre-
viously we presented such results for LiX crys-

tals.® Here, however, the Na' and K" ions are

much larger than the Li* ion and thus the number

of iterations need to obtain self-consistency is in-
creased. The principal effects of going into a crys-
tal environment is to produce changes in the outer
orbitals. Thus it appears that the principal effects
of the rotation in the Fock manifold in Eq. (4) is to
produce intraband mixing rather than interband mix-
ing. This is seen from the smallness of the €, ;-
parameters for n#n’ in Tables I-V.
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The influence of electric dipole interactions among substitutional polar molecules and at-
oms in the alkali halides is studied in the systems KCl: Li, KCl: OH, RbCl:OH, NaBr:F,
and KC1: CN. A maximum is observed in the dc dielectric constant at a temperature Tp,,

which is shown to be proportional to the average interaction energy.

this is not a relaxation effect.

It is also shown that

A remanent polarization is observed at low temperatures,

which is caused by parallel-aligned pairs of dipoles experiencing a reorientation barrier.
Specific-heat and thermal-conductivity measurements are also analyzed for the influence of

interactions.

Owing to the finite zero-field tunnel splitting of the impurity states, there is
a threshold concentration, below which interaction effects are vanishingly small.

The ex-

perimental results are compared to recent theoretical investigations and to results obtained

on dilute magnetic alloys.

In KC1: OH, the specific heat at high OH" concentrations N is

proportional to N-1/2T3/2,  An unsuccessful search for direct evidence of polarization waves

analogous to spin waves is reported and they are presumed heavily damped.

It is conjectured

that the above specific-heat result may be due to these modes.

I. INTRODUCTION

Certain atomic and molecular substitutional
impurities in alkali halides are known to tunnel
among equivalent potential wells within the lattice
vacancy they occupy. The tunneling states asso-
ciated with this motion are well understood.! Some
of these ions have large electric dipole moments.
These ions resemble a dilute gas of polar molecules
and therefore allow the study of the dielectric prop-
erties of such a gas without the complications of
condensation at low temperatures.? A particularly
attractive question is that of the electric dipole-
dipole interaction and the possibility of observing
an ordered state.

Electric dipole interactions among such impuri-
ties were first reported by Kianzig, Hart, and
Roberts, who observed a maximum in the ac di-
electric constant in KC1:OH at low temperatures.’
This work ledtoanumber of theoretical investiga-
tions of this subject. *®

Analogous magnetic systems, namely, transi-
tion-metal impurities in noble metals, have numer-
ous properties resembling the systems studied
here. ®!° Perhaps the most fundamental one is that
only local order can exist at moderate concentra-
tions. Anderson has discussed this peculiarity in
the magnetic case.!’ Other effects are the appear-

ance of a magnetic remanence that decays in time,
a specific heat linear in temperature, and a maxi-
mum in the susceptibility occurring at a tempera-
ture which is proportional to concentration.

The advantage one finds in the dipolar systems
is the basically simple nature of the electric dipole
interaction. Consequently, one might hope to ob-
serve cooperative phenomena over a wide range of
concentration and explain the results in a straight-
forward manner. It is also possible that a study
of dipolar systems will contribute to the under -
standing of the magnetic alloys.

In this paper we report a detailed study of the
dielectric constant of a variety of dipolar impuri-
ties and the observation of a hysteresis and rema-
nent polarization, which we explain through elec-
tric dipole interactions. These effects are depen-
dent upon temperature, concentration, and time
(or frequency). This interaction has also been
studied through specific-heat measurements and
appears to be noticed in the thermal conductivity.
The experimental results will be compared with
the published theoretical results and new calcula-
tions, presented in Sec. II.

A particularly interesting manifestation of an
electrically ordered state would be the existence
of the electric analog of spin waves. We shall
describe an unsuccessful search for dipolar waves.



